Respuesta :

(4 – 2i)(6 + 2i)

FOIL

First : 4*6 =24

Outer: 4*2i = 8i

Inner: -2i* 6 = -12i

Last: -2i*2i = -4i^2 =-4(-1) =4

Add together

24+8i-12i+4

28-4i

Answer: 28-4i

The value of the product [tex](4 - i 2)\cdot (6 + i 2)[/tex] is [tex]z = 28 - i\,4[/tex].

Complex numbers are numbers of the form described below:

[tex]z = a + i\,b[/tex], [tex]a,\,b\in \mathbb{R}[/tex] (1)

Where:

  • [tex]i[/tex] - Identification of the complex component.
  • [tex]z[/tex] - Identification of the complex number itself.

Let [tex]z_{1}[/tex] and [tex]z_{2}[/tex] be complex numbers, the product of these two complex numbers is also a complex number of the form:

[tex]z_{1} = a + i\,b[/tex] (2)

[tex]z_{2} = c + i\,d[/tex] (3)

[tex]z_{3} = z_{1}\cdot z_{2} = (a + i\,b)\cdot (c + i\,d) = (a\cdot c-b\cdot d) +i\,(a\cdot d + b\cdot c)[/tex]

If we know that [tex]z_{1} = 4-i\,2[/tex] and [tex]z_{2} = 6 + i\,2[/tex], then the product of these two complex numbers is:

[tex]z = (24+4)+i\,(8-12)[/tex]

[tex]z = 28 - i\,4[/tex]

The value of the product [tex](4 - i 2)\cdot (6 + i 2)[/tex] is [tex]z = 28 - i\,4[/tex].

We kindly invite to check this question on complex numbers: https://brainly.com/question/10251853