1. What is the perimeter of △ABC with vertices at A(−11, 4) , B(−7, 8) , and C (−4, 4)?Round only your final answer to the nearest tenth.

2. Rectangle WXYZ has vertices at W(−6, 1) , X(−1, 6) , Y(2, 3) , and Z(−3, −2) . What are the perimeter of the rectangle? Round only your final answer to the nearest tenth, if necessary.

Respuesta :

ANSWER TO QUESTION 1

We use the distance formula,

[tex]d = \sqrt{ {(x_2-x_1)}^{2} + {(y_2-y_1)}^{2} } [/tex]

to find the length of each side and add them to find the total distance around the triangle.

A(−11, 4) , B(−7, 8) , and C (−4, 4) are the vertices of the triangle.

[tex]|AB|= \sqrt{ {( - 7 - - 11)}^{2} + {(8 - 4)}^{2} } [/tex]

[tex]|AB|= \sqrt{ {( - 7 + 11)}^{2} + {(8 - 4)}^{2} } [/tex]

[tex]|AB|= \sqrt{ {( 4)}^{2} + {(4)}^{2} } [/tex]

[tex]|AB|= \sqrt{ 16 + 16} [/tex]

[tex]|AB|= \sqrt{32} [/tex]

[tex]|AB|= 4\sqrt{2} \: units[/tex]

[tex]|BC|= \sqrt{ {( - 7- -4)}^{2} + {(8- 4)}^{2} } [/tex]

[tex]|BC|= \sqrt{ {( - 7+ 4)}^{2} + {(8- 4)}^{2} } [/tex]

[tex]|BC|= \sqrt{ {( -3)}^{2} + {(4)}^{2} } [/tex]

[tex]|BC|= \sqrt{ 9 + 16} [/tex]

[tex]|BC|= \sqrt{ 25} [/tex]

[tex]|BC|=5 \: units[/tex]

[tex]|AC|= \sqrt{ {( - 11- -4)}^{2} + {(4 - 4)}^{2} } [/tex]

.
[tex]|AC|= \sqrt{ {( - 11 + 4)}^{2} + {(4 - 4)}^{2} } [/tex]

[tex]|AC|= \sqrt{ {( - 7)}^{2} + {(0)}^{2} } [/tex]

[tex]|AC|= \sqrt{ 49} [/tex]

[tex]|AC|= 7 \: units[/tex]

[tex]Perimeter = 7 + 5 + 4 \sqrt{2} = 12 + 4 \sqrt{2} = 17.7 \: units[/tex]

ANSWER TO QUESTION 2

For the rectangle the perimeter is given by the formula,

[tex]p = 2w + 2l[/tex]

we use the distance formula again to find the length and width of the rectangle.

W(−6, 1) , X(−1, 6) , Y(2, 3) , and Z(−3, −2) are the vertices of the rectangle.

[tex]|WX|= \sqrt{ {( - 1 - - 6)}^{2} + (6 - 1) ^{2} } [/tex]

[tex]|WX|= \sqrt{ {( - 1 + 6)}^{2} + (6 - 1) ^{2} } [/tex]

[tex]|WX|= \sqrt{ {( 5)}^{2} + (5) ^{2} } [/tex]

[tex]|WX|= \sqrt{ 25 + 25 } [/tex]

[tex]|WX|= \sqrt{ 50} [/tex]

[tex]|WX|= 5\sqrt{ 2 } [/tex]

This the length of the rectangle.

We now find the width.

[tex]|XY| = \sqrt{ {(2 - - 1)}^{2} + {(3 - 6)}^{2} } [/tex]

[tex]|XY| = \sqrt{ {(2 + 1)}^{2} + {( 3 - 6)}^{2} } [/tex]

[tex]|XY| = \sqrt{ {( 3)}^{2} + {( - 3)}^{2} } [/tex]

[tex]|XY| = 3\sqrt{ 2} [/tex]

[tex]Perimeter = 2(5 \sqrt{2} ) + 2(3 \sqrt{2)} [/tex]

[tex]Perimeter = 2(8\sqrt{2)} = 16 \sqrt{2} \: \: = 22.6 \: units[/tex]