If 5x2 + y4 = 21 then evaluate the second derivative of y with respect to x when x = 2 and y = 1. Round your answer to two decimal places. Use the hyphen symbol, -, for negative values.

Respuesta :

Answer:

-77.50

Step-by-step explanation:

[tex]5x^2+y^4=21[/tex]

We take first derivative

Derivative of x is 1. Derivative of y is dy/dx

Derivative of x^2 is 2x

Derivative of y^4 is 4y^3(dy/dx)

[tex]10x+4y^3(\frac{dy}{dx})=0[/tex]

Now isolate dy/dx

Subtract 10x on both sides

[tex]4y^3(\frac{dy}{dx})=-10x[/tex]

Divide both sides by 4y^3

[tex]\frac{dy}{dx}= \frac{-10x}{4y^3}[/tex]

[tex]\frac{dy}{dx}= \frac{-5x}{2y^3}[/tex]

Now we take second derivative. Apply quotient rule

Derivative of -5x is -5 and derivative of 2y^3 is 6y(dy/dx)

[tex]\frac{d^2y}{dx^2}= \frac{(-5)(2y^3)-(-5x)(6y^2\frac{dy}{dx})}{(2y^3)^2}[/tex]

Replace dy/dx , [tex]\frac{dy}{dx}= \frac{-5x}{2y^3}[/tex]

[tex]\frac{d^2y}{dx^2}= \frac{(-5)(2y^3)-(-5x)(6y^2\frac{-5x}{2y^3})}{(2y^3)^2}[/tex]

[tex]\frac{d^2y}{dx^2}= \frac{-10y^3-\frac{75x^2}{y}}{(4y^6)}[/tex]

Now plug in x=2  and y=1

[tex]\frac{d^2y}{dx^2}= \frac{-10(1)^3-\frac{75(2)^2}{1}}{(4(1)^6)}[/tex]

[tex]\frac{d^2y}{dx^2}= -77.50[/tex]