Respuesta :

Answer:

[tex]y(t)=\frac{1}{4} tsin(2t)+\frac{3}{2} sin(2t)+5cos(2t)[/tex]

Step-by-step explanation:

we are given

y(0)=5

y'(0)=3

[tex]y''+4y=cos(2t)[/tex]

we can take Laplace transform both sides

[tex]s^2Y(s)-sy(0)-y'(0)+4Y(s)=\frac{s}{s^2+4}[/tex]

now, we can plug values

[tex]s^2Y(s)-5s-3+4Y(s)=\frac{s}{s^2+4}[/tex]

now, we can solve for Y(s)

[tex]Y(s)=\frac{s}{(s^2+4)^2}+\frac{5s+3}{(s^2+4)}[/tex]

now, we can take inverse Laplace transform both sides

we can use Laplace transform table

and we get

[tex]y(t)=\frac{1}{4} tsin(2t)+\frac{3}{2} sin(2t)+5cos(2t)[/tex]