Respuesta :
ax² + bx + c = 0
x = (-b ± √(b² - 4ac))/2a
First, rewrite the first equation so that the first coefficient is 1. Divide everything by a.
(ax² + bx + c = 0)/a =
x² + (b/a)x + (c/a) = 0
Isolate (c/a) by subtracting (c/a) from both sides
x² + (b/a)x + (c/a) (-(c/a) = 0 (- (c/a)
x² + (b/a)x = 0 - (c/a)
Add spaces
x² + (b/a)x = -c/a
Take 1/2 of the middle term's coefficient and square it. Remember that what you add to one side, you add to the other.
x² + (b/a)x + (b/2a)² = -c/a + (b/2a)²
Simplify the left side of the equation.
x² + (b/a)x + (b/2a)² = (x + (b/2a))²
(x + b/2a))² = ((b²/4a²) - (4ac/4a²)) -> ((b² - 4ac)/(4a²))
Take the square root of both sides of the equation
√(x + b/2a))² = √((b²/4a²) - (4ac/4a²))
x + b/(2a) = (±√(b² - 4ac)/2a
Simplify. Isolate the x.
x = -(b/2a) ± (∛b² - 4ac)/2a = (-b ± √(b² - 4ac))/2a
~
Answer:
Full explanation down here ↓↓↓↓
Step-by-step explanation:
Hello!
Let's start our derivation:
- [tex]0 = ax^2 + bx + c[/tex]
- [tex]-c = ax^2 + bx[/tex]
Now, let's complete the square. Set the x² coefficeint to 1 by factoring out a:
- [tex]-c = a(x^2 + \frac{b}{a}x)[/tex]
Complete the square:
- Take the "B" value: [tex]\frac ba[/tex]
- Divide it by 2: [tex]\frac b{2a}[/tex]
- Square it: [tex]\frac{b^2}{4a^2}[/tex]
Add it to both sides and balance the equation:
- [tex]-c + \frac{ab^2}{4a^2} = a(x^2 + \frac ba x + \frac{b^2}{4a^2})[/tex] Balance the equation
- [tex]-c + \frac{b^2}{4a} = a(x + \frac b{2a})^2[/tex] Simplify
- [tex]-4ac + b^2 = 4a^2(x+\frac b{2a})^2\\[/tex] Multiply by 4a
- [tex]\frac{b^2 - 4ac}{4a^2} = (x+\frac b{2a})^2[/tex] Divide by 4a²
- [tex]\sqrt{ \frac{b^2 - 4ac}{4a^2} }= \sqrt{(x+\frac b{2a})^2}[/tex] Take the square root of both sides
- [tex]\frac{\pm\sqrt{b^2 - 4ac}}{2a} = x + \frac b {2a}[/tex] Simplify(add plus or minus)
- [tex]\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = x[/tex] Simplify
And there you have it! The full proof of the quadratic formula by completing the square.