Respuesta :

znk

Answer:

The discriminant equals zero.

Explanation:

The standard form of a quadratic equation is

ax² + bx + c = 0

The solution is the familiar quadratic formula

[tex]x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

The term b² -4ac is the discriminant (D).

D tells you the number of roots.

If D = 0, the solution to the equation becomes

[tex]x = \frac{-b\pm\sqrt{0}}{2a}[/tex]

[tex]x = \frac{-b}{2a}[/tex]

If D = 0, there is exactly one zero.

===============

Example:

Find the zeroes of

f(x) = x² - 2x + 1

[tex]x = \frac{2 \pm \sqrt{(-2)^{2} - 4(1)(1)}}{2(1)}[/tex]

[tex]x = \frac{2 \pm\sqrt{4 - 4}}{2}[/tex]

[tex]x = \frac{2 \pm\sqrt{0}}{2}[/tex]

[tex]x = \frac{2 \pm 0}{2}[/tex]

[tex]x = \frac{2}{2}[/tex]

x = 1

The graph is a parabola with its vertex touching the x-axis at x = 1.

Ver imagen znk