Respuesta :

Answer:

[tex]y= \frac{-1}{3}(x)-2[/tex]

Step-by-step explanation:

Given equation of line is y=3x-5

Given equation is in the form of y = mx + b

where m is the slope

Slope of the line = 3

Slope of perpendicular line = negative reciprocal of slope of given line

Slope of perpendicular line = [tex]\frac{-1}{3}[/tex]

We got slope m= -1/3  and point (-3,-1) (x1=-3  and y1=-1)

Lets find equation of perpendicular line  using point slope formula

[tex]y-y_1= m (x-x_1)[/tex]

Plug in the values

[tex](y-(-1))= \frac{-1}{3}(x-(-3))[/tex]

[tex]y+1= \frac{-1}{3}(x+3)[/tex]

Distribute -1/3 inside the parenthesis

[tex]y+1= \frac{-1}{3}(x)+\frac{-1}{3}(3)[/tex]

[tex]y+1= \frac{-1}{3}(x)-1[/tex]

Now subtract 1 on both sides

[tex]y= \frac{-1}{3}(x)-2[/tex]