Answer:
[tex]y= \frac{-1}{3}(x)-2[/tex]
Step-by-step explanation:
Given equation of line is y=3x-5
Given equation is in the form of y = mx + b
where m is the slope
Slope of the line = 3
Slope of perpendicular line = negative reciprocal of slope of given line
Slope of perpendicular line = [tex]\frac{-1}{3}[/tex]
We got slope m= -1/3 and point (-3,-1) (x1=-3 and y1=-1)
Lets find equation of perpendicular line using point slope formula
[tex]y-y_1= m (x-x_1)[/tex]
Plug in the values
[tex](y-(-1))= \frac{-1}{3}(x-(-3))[/tex]
[tex]y+1= \frac{-1}{3}(x+3)[/tex]
Distribute -1/3 inside the parenthesis
[tex]y+1= \frac{-1}{3}(x)+\frac{-1}{3}(3)[/tex]
[tex]y+1= \frac{-1}{3}(x)-1[/tex]
Now subtract 1 on both sides
[tex]y= \frac{-1}{3}(x)-2[/tex]