Respuesta :
[tex]\bf (\stackrel{x_1}{7}~,~\stackrel{y_1}{-21})\qquad (\stackrel{x_2}{-4}~,~\stackrel{y_2}{23}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{23-(-21)}{-4-7}\implies \cfrac{23+21}{-11}\\\\\\ \cfrac{44}{-11}\implies -4 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-(-21)=-4(x-7)\implies y+21=-4(x-7)[/tex]
Answer:
See Below
Step-by-step explanation:
The point slope equation follows − ^1 = ( − ^1).
To find m, follow the formula [tex]\frac{y2 - y1}{x2 -x1}[/tex]
In this case, [tex]m = \frac{23-(-21)}{-4-7} = -4[/tex]
Hence, the point-slope equation is [tex]y + 21 = -4 (x - 7)[/tex], or alternatively,
[tex]y - 23 = -4 (x+4)[/tex]