ANSWER
[tex]Average \: Weight = 7 \frac{1}{8} \: bushels[/tex]
EXPLANATION
To find the average weight per bushel, we add all the three weight and divide by 3.
[tex]Average \: Weight = \frac{8 \frac{1}{4} + 6 \frac{1}{2} + 6 \frac{5}{8} }{3} [/tex]
We convert all the mixed numbers to improper fraction to obtain,
[tex]Average \: Weight = \frac{ \frac{33}{4} + \frac{13}{2} + \frac{53}{8} }{3} [/tex]
The least common denominator for the fractions in the numerator is 8.
This implies that,
[tex]Average \: Weight = \frac{ \frac{66 + 52 + 53}{8} }{3} [/tex]
This simplifies to
[tex]Average \: Weight = \frac{ \frac{171}{8} }{3} [/tex]
This gives us,
[tex]Average \: Weight = \frac{171}{24} [/tex]
[tex]Average \: Weight = \frac{57}{8} [/tex]
[tex]Average \: Weight = 7 \frac{1}{8} [/tex]