Respuesta :

Answer:

The value of [tex]s_{26}=84.5[/tex]

Step-by-step explanation:

We have given  [tex]a_{14}=4.1[/tex]

d=1.7

We have to find [tex]s_{26}[/tex]

So, [tex]a_{14}=a+13d[/tex] from the formula

[tex]a_n=a+(n-1)d[/tex]

When n=14

[tex]a_{14}=a+(14-1)(1.7)=a+13(1.7)[/tex]

[tex]4.1=a+22.1[/tex]

[tex]-18=a[/tex]

[tex]a=-18[/tex]

Using the formula:

[tex]s_n=\frac{n}{2}[2a+(n-1)d[/tex]

When n=26

[tex]s_{26}=\frac{26}{2}[2(-18)+(26-1)(1.7)][/tex]

On simplification we get:

[tex]s_{26}=84.5[/tex]