Respuesta :

Answer:

Side DF = 4 units

Step-by-step explanation:

Similar triangles states that the triangles with equal corresponding angles and proportionate sides.

Given: ΔABC and ΔDEF are similar

Corresponding angles are;

[tex]\angle A = \angle D[/tex] ,  

[tex]\angle B = \angle C[/tex] ,

[tex]\angle C= \angle F[/tex]

Proportionate sides are;

[tex]\frac{AB}{DE} =\frac{BC}{EF} =\frac{AC}{DF}[/tex]

It is also given BC = 6 units , EF = 8 units and DF -AC = 1

Let AC = x units then;

DF = x +1 units.

Then, by definition of similar triangle ;

[tex]\frac{BC}{EF} =\frac{AC}{DF}[/tex]

[tex]\frac{6}{8} =\frac{x}{x+1}[/tex]

By cross multiply we have;

[tex]6(x+1) = 8x[/tex]

Using distributive property;  [tex]a\cdot(b+c) = a\cdot b+ a\cdot c[/tex]

6x + 6 = 8x

Subtract 6x on both sides we get;

6x + 6 -6x = 8x -6x

Simplify:

6 = 2x

Divide by 2 on both sides we get;

x = 3

DF = x +1  = 3+1 = 4

Therefore, the side DF is, 4 units





Ver imagen OrethaWilkison
rams58

Answer:

DF=4

Just cause of math