Respuesta :

Answer:

DF=3.0cm, EF=3cm

Step-by-step explanation:

Given: ΔABC is similar to ΔDEF,

Therefore: [tex]\frac{AB}{DE} =\frac{AC}{DF}[/tex]

            ⇒[tex]\frac{2}{1.5}= \frac{4}{DF}[/tex]

            ⇒ DF=3.0cm

Now, by the similarity of triangles, we have Ef=3cm.

Ver imagen empathictruro

Answer:

The sides of △DEF are DE = 1.5cm, DF = 3cm, and EF= 2.25 cm.

Step-by-step explanation:

We know that

[tex]\triangle ABC \sim \triangle DE\ F[/tex]

[tex]AB=2cm\\BC=3cm\\CA=4cm\\DE=1.5cm[/tex]

Remember that a similarity between two triangles represent a proportional relation between corresponding side. In this case, such proportions are

[tex]\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}[/tex]

So, we have to find sides DF and EF. Using given values, we have

[tex]\frac{AB}{DE}=\frac{BC}{EF}\\ \frac{2}{1.5}=\frac{3}{EF}\\ EF=\frac{3(1.5)}{2}=2.25[/tex]

Then,

[tex]\frac{AB}{DE}=\frac{AC}{DF}\\\frac{2}{1.5}=\frac{4}{DF}\\ \\DF=\frac{4(1.5)}{2}=3[/tex]

Therefore, the sides of △DEF are DE = 1.5cm, DF = 3cm, and EF= 2.25 cm.