What does the fundamental theorem of algebra state about the equation 2x^2-4x+16=0?

Answer: (A) degree of 2; 1 ± i√7
Step-by-step explanation:
Degree of the polynomial designates the number of roots.
x² - 2x + 8
a=1 b=-2 c=8
[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
[tex]=\dfrac{-(-2)\pm\sqrt{(-2)^2-4(1)(8)}}{2(1)}[/tex]
[tex]=\dfrac{2\pm\sqrt{4-32}}{2}[/tex]
[tex]=\dfrac{2\pm\sqrt{-28}}{2}[/tex]
[tex]=\dfrac{2\pm2i\sqrt{7}}{2}[/tex]
[tex]=\dfrac{2(1\pm\\i\sqrt7)}{2}[/tex]
= 1 ± i√7