Respuesta :
QUESTION 1
The given function is
[tex]h(x)=-4x-72[/tex]
If [tex]x[/tex] decreases by [tex]11[/tex], then the new value is [tex]x-11[/tex].
We need to find the value the function at [tex]x-11[/tex] which is
[tex]h(x-11)=-4(x-11)-72[/tex]
This simplifies to
[tex]h(x-11)=-4x+44-72[/tex]
The increment in [tex]h(x)[/tex] is given by;
[tex]h(x-11)-h(x)=-4x+44-72-(-4x-72)[/tex]
This simplifies to,
[tex]h(x-11)-h(x)=-4x+44-72+4x+72[/tex]
This further simplifies to
[tex]h(x-11)-h(x)=44[/tex]
Therefore the corresponding increment in [tex]h(x)[/tex] is [tex]44[/tex].
QUESTION 2
The given function is
[tex]f(x)=\frac{3}{17}x+2[/tex].
If [tex]x[/tex] increases by [tex]51[/tex], then the new value of [tex]x[/tex] is [tex]x+51[/tex].
The increment in [tex]f(x)[/tex] is given by
[tex]h(x+51)-h(x)=\frac{3}{17}(x+51)+2-(\frac{3}{17}x+2)[/tex]
We expand the brackets to get,
[tex]h(x+51)-h(x)=\frac{3}{17}x+9+2-\frac{3}{17}x-2[/tex]
We simplify further to obtain,
[tex]h(x+51)-h(x)=9[/tex]
Therefore the corresponding increment in [tex]f(x)[/tex] is [tex]9[/tex].
Answer#1
increase by 44
Step-by-step explanation:
Given function is
h(x)=-4x-72........(1)
we have tofind
h(x-11)=?
replace x by x-11 in (1) we get
h(x-11)=-4(x-11)-72
h(x-11)=-4x+44-72
h(x-11)= -4x-28...........(2)
and h(x)= -4x-72
subtracting (1) from (2)
we get
h(x-11)- h(x)= -4x-28 - (-4x-72)
h(x-11)- h(x)= -4x-28 +4x+72
h(x-11)- h(x)= 44
hence it increases by 44
Answer#2
it will increase by [tex]\frac{103}{17}[/tex]
Step-by-step explanation:
we are given
f(x)=[tex]\frac{3x+34}{17}[/tex]..........(1)
we have to find
f(x+51)=?
and then (x+51)-f(x)=?
for f(x+51) we will replace x by x+51 in (1)
f(x+51)=[tex]\frac{3}{17}[/tex](x+51)+2
f(x+51)=[tex]\frac{3x+103+34}{17}[/tex]
f(x+51)=[tex]\frac{3x+137}{17}[/tex]............(2)
subtracting (1) from (2)
f(x+51)-f(x)=[tex]\frac{3x+137}{17}[/tex]- [tex]\frac{3x+34}{17}[/tex]
f(x+51)-f(x)=[tex]\frac{103}{17}[/tex]
hence it will increase by [tex]\frac{103}{17}[/tex]