MicroMexsus
contestada

The equation 24x2+25x−47ax−2=−8x−3−53ax−2 is true for all values of x≠2a, where a is a constant.

What is the value of a?

A) -16
B) -3
C) 3
D) 16

Respuesta :

Answer:

Option B is correct

Explanation:

Value of a is -3

Given the equation:   [tex]\frac{24x^2+25x-47}{ax-2} =-8x-3-\frac{53}{ax-2}[/tex] is true for all [tex]x\neq 2a[/tex]

To find the value of a.

Multiply both sides of the given equation by [tex](ax-2)[/tex], we have;

 [tex]24x^2+25x-47=(-8x-3)(ax-2)-53[/tex]

Using FOIL Method to multiply two binomials i.e (-8x-3)(ax-2)

[tex]24x^2+25x-47=-8ax^2+16x-3ax+6-53[/tex]

or

[tex]24x^2+25x-47=-8ax^2+x(16-3a)-47[/tex]

Since the coefficients of the [tex]x^2[/tex] term have to be equal on both sides of the equation. we have;

-8a = 24

Divide both sides by -8 we get;

a = -3

Therefore, the value of a is, -3