Respuesta :
If ΔGJI and ΔPKH are similar, then ∡G≅∡P, ∡J≅∡K and ∡I≅∡H.
We have m∡G + m∡P = 50°, therefore m∡G = m∡P = 50° : 2 = 25°.
m∡I = 48° therefore m∡H = 48°.
We know, the sum of the measures of the angles of a triangle is equal 180°.
Therefore we have the equation:
m∡G + m∡J + m∡I = 180°
25° + m∡J + 48° =180°
73° + m∡J = 180° subtract 73° from both sides
m∡J = 107° → m∡K = 107°.
Answer: ΔGJI and ΔPKH: 25°, 107°, 48°
The measures of all the angles of these triangles are: [tex]\rm 25^\circ,\;48^\circ\;and \; 107^\circ[/tex] and this can be determined by using the properties of the triangle.
Given :
- Triangles △GJI and △PKH are similar.
- m∠G + m∠P = 50°, and m∠I = 48°.
Given that triangle GJI and triangle PKH are similar therefore:
[tex]\rm \angle G = \angle P[/tex]
[tex]\rm \angle J = \angle K[/tex]
[tex]\rm \angle I = \angle H[/tex]
The sum of the interior angles of the triangle is [tex]180^\circ[/tex].
[tex]\rm \angle G + \angle I + \angle J = 180^\circ[/tex]
[tex]\rm 25^\circ + 48^\circ + \angle J = 180^\circ[/tex]
[tex]\rm 73^\circ + \angle J = 180^\circ[/tex]
[tex]\rm \angle J = 107^\circ = \angle K[/tex]
The measures of all the angles of these triangles are: [tex]\rm 25^\circ,\;48^\circ\;and \; 107^\circ[/tex].
For more information, refer to the link given below:
https://brainly.com/question/10652623