Respuesta :

Answer:

3720 units^3

Step-by-step explanation:


For this case we must find the volume of the figure composed of a parallelepiped and a pyramid. The volume of the parallelepiped is given by:

[tex]V = a * b * c[/tex]

Where a, b and c are the sides

[tex]V = 20 * 15 * 12\\V = 3600 \ units ^ 3[/tex]

For its part, the volume of the pyramid is given by:

[tex]V = \frac {b * h} {2} * Depth[/tex]

Where:

[tex]b = 15\\h = 16\\Depth = 20[/tex]

[tex]V = \frac {15 * 16} {2} * 20\\V = 2400 \ units ^ 3[/tex]

Thus, the total volume is given by the sum of the volumes.

[tex]Vt = 3600 + 2400\\Vt = 6000 \ units ^ 3[/tex]

Answer:

D