Answer:
Given the inequality: [tex]8n+4< 28[/tex]
Subtract 4 from both sides we have;
[tex]8n< 24[/tex]
Divide 8 to both sides we have;
[tex]n < 3[/tex]
The solution set for this inequality is: [tex](-\infty, 3)[/tex]
Let any 3 values from this solution sets:
n = 2
then;
[tex]8(2)+4< 28[/tex]
[tex]16+4<24[/tex]
[tex]20<24[/tex] true
Similarly for:
n = 1
[tex]8(1)+4< 28[/tex]
[tex]8+4<24[/tex]
[tex]12<24[/tex] true
For n =0
[tex]8(0)+4< 28[/tex]
[tex]0+4<24[/tex]
[tex]4<24[/tex] true
Therefore, the 3 values that would make this inequality true [tex]8n+4< 28[/tex] is, {0, 1, 2}