Find the volume of the solid obtained by rotating region bounded by the given curves about the line. y = x, y = 0, x = 2, x = 5; about x = 1?

Respuesta :

The volume is given by the integral

[tex]\displaystyle2\pi\int_2^5x(x-1)\,\mathrm dx[/tex]

using the shell method. We approximate the solid of revolution with hollow cylinders with radius [tex]x-1[/tex] and height [tex]x[/tex].

[tex]\displaystyle2\pi\int_2^5x^2-x\,\mathrm dx=2\pi\left(\frac{x^3}3-\frac{x^2}2\right)\bigg|_{x=2}^{x=5}=57\pi[/tex]