Respuesta :

Answer:

A

Step-by-step explanation:

The angle subtended at the centre of the circle by arc XPY is 270°

That is 360° - 90° = 270°

arc length = circumference × fraction of circle

                 = 2πr × [tex]\frac{270}{360}[/tex]

                 = 2π × 20 × [tex]\frac{3}{4}[/tex]

                 = 40π × [tex]\frac{3}{4}[/tex] = 30π m → A



Answer:

The correct option is A.

Step-by-step explanation:

Given information: The radius of the circle is 20m and central angle of arc XY is 90 degrees.

The central angle of arc XPY is

[tex]\text{Central angle of arc XPY}=360-90[/tex]

[tex]\text{Central angle of arc XPY}=270[/tex]

Multiply this angle by [tex]\frac{\pi}{180}[/tex], to convert is into radian.

[tex]\text{Central angle of arc XPY}=270\times \frac{\pi}{180}[/tex]

[tex]\text{Central angle of arc XPY}=\frac{3\pi}{2}[/tex]

The formula for arc length is

[tex]l=r\theta[/tex]

Where, r is radius and θ is central angle in radian.

[tex]l=20\times \frac{3\pi}{2}[/tex]

[tex]l=30\pi[/tex]

The length of XPY in terms of pie is 30π m. Therefore the correct option is A.