Answer:
Option (C) is correct.
The solution of the quadratic equation [tex]12x^2+11x-5=0[/tex] is [tex]x=\frac{1}{3}[/tex] and [tex]x=\frac{-5}{4}[/tex]
Step-by-step explanation:
Consider the given quadratic equation [tex]12x^2+11x-5=0[/tex]
We can solve the quadratic equation using middle term splitting method,
11x can be written as 15x-4x , we get,
[tex]\Rightarrow 12x^2+11x-5=0[/tex]
[tex]\Rightarrow12x^2+15x-4x-5=0[/tex]
Taking terms common, we get,
[tex]\Rightarrow3x(4x+5)-1(4x+5)=0[/tex]
Thus, [tex]\Rightarrow (3x-1)(4x+5)=0[/tex]
Thus, we get [tex]\Rightarrow (3x-1)=0[/tex] or [tex]\Rightarrow (4x+5)=0[/tex]
this gives [tex]\Rightarrow x=\frac{1}{3}[/tex] or [tex]\Rightarrow x=\frac{-5}{4}[/tex]
Thus, the solution of the quadratic equation [tex]12x^2+11x-5=0[/tex] is [tex]x=\frac{1}{3}[/tex] and [tex]x=\frac{-5}{4}[/tex]