Suppose that x and y vary inversely and that y=1/6 when x=3. Write a function that models the inverse variation and find y when x=10.

Respuesta :

Answer:

The Inverse variation states a relationship between the two variable in which the product is constant.

i.e [tex]x \propto \frac{1}{y}[/tex]

then the equation is of the form: [tex]xy = k[/tex] where k is the constant of variation.

As per the given information: It is given that x and y  vary inversely and that y = 1/6 when x = 3.

then, by definition of inverse variation;

xy = k                                      ......[1]

Substitute the given values we have;

[tex]3 \cdot \frac{1}{6} = k[/tex]

[tex]\frac{1}{2} = k[/tex]

Now, find the value of y when x = 10.

Substitute the given values of x=10 and k = 1/2, in [1] we have;

[tex]10y = \frac{1}{2}[/tex]

Divide both sides by 10 we get;

[tex]y = \frac{1}{20}[/tex]

therefore, a function that models the inverse variation is; [tex]xy = \frac{1}{2}[/tex] and value of  [tex]y = \frac{1}{20}[/tex] when x = 10.



Answer:

y = 1/20 when x = 10

Explanation:

We know that x and y vary inversely and [tex]y=\frac{1}{6}[/tex] when [tex]x=3[/tex].

So we can write the function of an inverse variation as:

[tex] y [/tex] ∝ [tex] \frac{1} {x} [/tex]

[tex] y = \frac {k} {x} [/tex]

Finding the constant [tex] k [/tex]:

[tex]\frac{1}{6} =\frac{k}{3}[/tex]

[tex]k=\frac{1}{6}*3[/tex]

[tex]k=\frac{1}{2}[/tex]

Now finding the missing value [tex] y [/tex]:

[tex]y=\frac{\frac{1}{2}}{10}[/tex]

[tex]y = \frac{1}{2} * \frac{1}{10} [/tex]

[tex]y = \frac{1}{20}[/tex]

Therefore, the missing value is [tex](10, \frac{1}{20} )[/tex].