Respuesta :

Answer:

[tex]x= \frac{3+\sqrt{7}i}{4}}[/tex] or [tex]x=\frac{3-\sqrt{7}i}{4}}[/tex]

Step-by-step explanation:

[tex]2x^2-3x+2=0[/tex]

We complete the square as follows

Group the constant term on the right hand side

[tex]2x^2-3x=-2[/tex]

Divide through by 2,

[tex]x^2-\frac{3}{2}x=-1[/tex]

Add half the square of the coefficient of x to get;

[tex]x^2-\frac{3}{2}x+(-\frac{3}{4})^2=-1+(-\frac{3}{4})^2[/tex]

Simplify to get

[tex](x-\frac{3}{4})^2=-1+\frac{9}{16}[/tex]


[tex](x-\frac{3}{4})^2=-\frac{7}{16}[/tex]

Take the square root of both sides to get

[tex](x-\frac{3}{4})=\pm \sqrt{-\frac{7}{16}}[/tex]

Solve for x

[tex](x-\frac{3}{4})=\pm \frac{\sqrt{7}i}{4}}[/tex]


[tex]x=\frac{3}{4} \pm \frac{\sqrt{7}i}{4}}[/tex]


[tex]x= \frac{3+\sqrt{7}i}{4}}[/tex] or [tex]x=\frac{3-\sqrt{7}i}{4}}[/tex]