Respuesta :

Answer:

x∈[tex](-6-\sqrt{29},-6+\sqrt{29})[/tex]

Step-by-step explanation:

The given equation is:

[tex]x^{2}+12x+7<0[/tex]

Using the quadratic formula, we get

[tex]x=\frac{-(12){\pm}\sqrt{(12)^{2}-4{\times}1{\times}7}}{2(1)}[/tex]

=[tex]\frac{-12{\pm}\sqrt{144-28}}{2}[/tex]

=[tex]\frac{-12{\pm}\sqrt{116}}{2}[/tex]

=[tex]\frac{-12{\pm}2\sqrt{29}}{2}[/tex]

=[tex]\frac{-6{\pm}\sqrt{29}}{1}[/tex]

Thus, x∈[tex](-6-\sqrt{29},-6+\sqrt{29})[/tex]

Answer:

(-11.385, -0.615)

Step-by-step explanation:

Inequation: x^2+12x+7<0

Equation: x^2+12x+7=0

Use the quadratic formula to get the roots of the equation.

[tex]\frac{-b \pm \sqrt{b^2 - 4\times a \times c}}{2\times a}[/tex]

[tex]\frac{-12 \pm \sqrt{12^2 - 4\times 1 \times 7}}{2\times 1}[/tex]

[tex]\frac{-12 \pm 10.77}{2}[/tex]

Root 1:

[tex]\frac{-12 + 10.77}{2}[/tex]

-0.615

Root 2:

[tex]\frac{-12 - 10.77}{2}[/tex]

-11.385

Then, the inequality can be expressed as

(x + 0.615)*(x + 11.385)<0

There are 2 ways to satisfy it:  

x + 0.615 < 0 and x + 11.385 > 0

or

x + 0.615 > 0 and x + 11.385 < 0

For the first case:

x + 0.615 < 0 and x + 11.385 > 0

x < -0.615 and x > -11.385

In interval notation (-11.385, -0.615)

For the second case:

x + 0.615 > 0 and x + 11.385 < 0

x > -0.615 and x < -11.385

Which is impossible to satisfy. Therefore, the solution is (-11.385, -0.615)