Respuesta :

Answer:

see explanation

Step-by-step explanation:

using the trigonometric identities

I have used x instead of theta

• sin²x + cos²x = 1

• secx = [tex]\frac{1}{cosx}[/tex] and tanx = [tex]\frac{sinx}{cosx}[/tex]

consider the left side

[tex]\frac{sinx}{cosx}[/tex] + [tex]\frac{cosx}{1+sinx}[/tex]

Combine the fractions

[tex]\frac{sinx(1+sinx)+sos^2x}{cosx(1+sinx)}[/tex]

= [tex]\frac{sinx+sin^2x+cos^2x}{cosx(1+sinx)}[/tex]

= [tex]\frac{1+sinx}{cosx(1+sinx)}[/tex]

= [tex]\frac{1}{cosx}[/tex] = secx = right side → verified