If cotθ=3/4 and the terminal point determined by θ is in quadrant 3, then: (choose all that apply)

cosθ=-3/5
tanθ=4/3
sinθ=3/5
cscθ=-5/3

Respuesta :

With [tex]\theta[/tex] in quadrant 3, we should expect both [tex]\cos\theta[/tex] and [tex]\sin\theta[/tex] to be negative, so that [tex]\tan\theta[/tex] is positive. The corresponding reciprocal expressions [tex](\sec\theta,\csc\theta,\cot\theta)[/tex] will have the same sign.

[tex]\cot\theta=\dfrac34\implies\tan\theta=\dfrac43[/tex]

Recall that [tex]1+\tan^2\theta=\sec^2\theta[/tex], which means

[tex]\sec\theta=-\sqrt{1+\tan^2\theta}=-\dfrac53[/tex]

[tex]\implies\cos\theta=-\dfrac35[/tex]

Also recall that [tex]\cos^2\theta+\sin^2\theta=1[/tex], so

[tex]\sin\theta=-\sqrt{1-\cos^2\theta}=-\dfrac45[/tex]

[tex]\implies\csc\theta=-\dfrac54[/tex]

Only the first two options are correct.

Answer:

Tan theta = 4/3 and cosine theta = -3/5 are the correct options.

Step-by-step explanation: