Respuesta :

Answer:

The first three terms of the series are 8, 10 and 12. The number of terms is 12 to make the sum 228.

Step-by-step explanation:

The series is defined as

[tex]t_n=2(n+3)[/tex]

Put n=1.

[tex]t_1=2(1+3)=2\times 4=8[/tex]

Put n=2.

[tex]t_2=2(2+3)=2\times 5=10[/tex]

Put n=3.

[tex]t_3=2(3+3)=2\times 6=12[/tex]

The first three terms of the series are 8, 10 and 12.

It is an arithmetic series. The first terms is 8 and the common difference is

[tex]d=a_2-a_1=10-8=2[/tex]

The sum of n terms of an arithmetic series is

[tex]S_n=\frac{n}{2}[2a+(n-1)d][/tex]

[tex]288=\frac{n}{2}[2(8)+(n-1)2][/tex]

[tex]288=\frac{2n}{2}[8+n-1][/tex]

[tex]288=n[n+7][/tex]

[tex]0=n^2+7n-288[/tex]

[tex]0=n^2+19n-12n-288[/tex]

[tex]0=n(n+19)-12(n+19)[/tex]

[tex]0=(n+19)(n-12)[/tex]

Equate each factor equal to zero.

[tex]n=-19,12[/tex]

The number of terms can not be negative, therefore the value of n must be 12.