Respuesta :

znk

Answer:

x = 0.82

Step-by-step explanation:

I am assuming your logistic function is  

[tex]f(x) = \frac{24 }{1 +3e^{-1.3x} }[/tex]

The graph of the function is asymmetric, the maximum value is 24, and the point of maximum growth is at

y = 24/2  

So, we can set y = 24/2 and solve for x.

[tex]\frac{24 }{ 2} = \frac{24 }{1 +3e^{-1.3x} }[/tex]

The numerators are equal, so the denominators must be equal.

[tex]2 = 1 +3e^{-1.3x}[/tex]

[tex]1 = 3e^{-1.3x}[/tex]

[tex]\frac{1 }{3}=e^{-1.3x}[/tex]

    log3 = -1.3x

-0.4771 = -1.3x

         x = 0.4771/1.3

         x = 0.82

The point of maximum growth is at x = 0.82.

You can see the logistic curve and the point of maximum growth in the image below.

Ver imagen znk