Respuesta :

Answer:

The simplified form of given expression is -27+i.

Step-by-step explanation:

The given expression is

[tex]2(i-14)-i(i+1)[/tex]

Use distribution property, to simplify the given expression,

[tex]2(i-14)-i(i+1)=2(i)-2(14)-i(i)-i(1)[/tex]

[tex]2(i-14)-i(i+1)=2i-28-i^2-i[/tex]

[tex]2(i-14)-i(i+1)=2i-28-(-1)-i[/tex]              [tex][\because i^2=-1][/tex]

Combine like terms,

[tex]2(i-14)-i(i+1)=(-28+1)+(2i-i)[/tex]

[tex]2(i-14)-i(i+1)=-27+i[/tex]

Therefore the simplified form of given expression is -27+i.

Answer:

i-27

Step-by-step explanation:

We have given an expression .

2(i-14)-i(i+1)

We have to simplify it.

Distribute 2 over first parentheses  and -i over second parentheses

2(i)+2(-14)+(-i)(i)+(-i)(1)

2i-28-i²-i

Since, we know that

i²  = -1

2i-28-(-1)-i

2i-28+1-i

Add like terms

(2-1)i+(-28+1)

(1)i+(-27)

i-27 which is the answer.