Answer:
See example below.
Step-by-step explanation:
You'll need the height and radius of the cone to find the volume. Use the example below to find your solution.
Example:
The volume of the cone is found using the volume formula for a cone [tex]V=\frac{1}{3}\pi r^2h[/tex].
Substitute h=18 and r = 6.
[tex]V = \frac{1}{3}\pi r^2h\\V = \frac{1}{3}\pi (6^2)(18)\\V=\frac{1}{3}\pi *36*18\\V = \frac{648}{3}\pi \\V= 216\pi = 678.24 [/tex]
A half sphere is a hemisphere. The volume of a hemisphere is half of [tex]V=\frac{4}{3}\pi r^3[/tex]. Substitute r=6.
[tex]V=\frac{4}{3}\pi r^3\\V=\frac{4}{3}\pi 6^3\\V=\frac{4}{3}\pi *216\\V=\frac{4*216}{3}\pi\\ V=288\pi=452.6[/tex]
However the hemisphere is half this so it is [tex]144\pi[/tex].
The total volume for this example is 452.6 + 678.24 = 1,130.84