Respuesta :

Answer:

[tex](x - 1)^2 - 6[/tex]

Step-by-step explanation:

You need to know:

Vertex form = [tex]a(x -h)^2 + k[/tex]

The vertex is at

(h, k)

Need to know about perfect squares

Need to know how to complete the square.

-----------------------------------------------------------------------------------------

To convert [tex]x^2-2x-5[/tex] you need to complete the square on the equation.

Complete the Square [tex]x^2 - 2x -5[/tex]

[tex]x^2 - 2x -5[/tex]

[tex](x^2 - 2x) -5[/tex]

Divide -2 by 2 and then square it.

[tex]\frac{-2}{2} = -1[/tex]

[tex]-1^2 = 1[/tex]

Add the one to the parentheses and subtract the one from the 5

[tex](x^2 - 2x +1) -5 -1[/tex]

Square  [tex](x^2 - 2x +1)[/tex]

[tex](x-1)^2[/tex]

Now we have

[tex](x - 1)^2 -5 -1[/tex]

Next add -5 - 1 = -6

[tex](x - 1)^2 - 6[/tex]

Our quadratic is in vertex form now.

Vertex form = [tex]a(x -h)^2 + k[/tex]

our equation =  [tex](x - 1)^2 - 6[/tex]

Vertex = (1, -6)

Ver imagen Аноним