Use the Law of Sines and/ or the Law of Cosines to solve each triangle round to the nearest tenths when necessary

measure of angle P

measure of angle Q

Measure of angle R

Use the Law of Sines and or the Law of Cosines to solve each triangle round to the nearest tenths when necessary measure of angle Pmeasure of angle QMeasure of class=

Respuesta :

Answer:

Part a) The measure of angle P is [tex]29.9\°[/tex]

Part b) The measure of angle R is [tex]26.3\°[/tex]

Part c) The measure of angle Q is [tex]123.8\°[/tex]

Step-by-step explanation:

step 1

Find the measure of angle P

Applying the law of cosines

[tex]cos(P)=[q^{2}+r^{2}-p^{2}]/[2qr][/tex]

we have

[tex]p=27\ mi[/tex]

[tex]q=45\ mi[/tex]

[tex]r=24\ mi[/tex]

substitute

[tex]cos(P)=[45^{2}+24^{2}-27^{2}]/[2(45)(24)]=0.8667[/tex]

[tex]P=arccos(0.8667)=29.9\°[/tex]

Step 2

Find the measure of angle R

Applying the law of sines

[tex]\frac{p}{sin(P)} =\frac{r}{sin(R)}[/tex]

substitute the values and solve for sin(R)

we have

[tex]p=27\ mi[/tex]

[tex]r=24\ mi[/tex]

[tex]P=29.9\°[/tex]

substitute

[tex]\frac{27}{sin(29.9\°)} =\frac{24}{sin(R)}[/tex]

[tex]sin(R)=sin(29.9\°)*(24)/27=0.4431[/tex]

[tex]R=arcsin(0.4431)=26.3\°[/tex]

step 3

Find the measure of angle Q

we know that

The sum of the interior angles in a triangle must be equal to 180 degrees

so

[tex]m<P+m<Q+m<R=180\°[/tex]

substitute the values

[tex]29.9\°+26.3\°+m<Q=180\°[/tex]

[tex]m<Q=180\°-(29.9\°+26.3\°)=123.8\°[/tex]