Respuesta :

Answer:

4(k - 3)(3k + 5)

Step-by-step explanation:

Given

12k² - 16k - 60 ← factor out 4 from each term

= 4(3k² - 4k - 15) ← factor the quadratic

Consider the factors of the product of the coefficient of the k² term and the constant term which sum to give the coefficient of the k term

product = 3 × - 15 = - 45 , sum = - 4

Factors are - 9 and + 5

Use these factors to split the middle term

3k² - 9k + 5k - 15 → ( factor the first/second and third/fourth terms

= 3k(k - 3) + 5(k - 3) ← factor out (k - 3)

= (k - 3)(3k + 5)

Hence

12k² - 16k - 60 = 4(k - 3)(3k + 5) ← in factored form

Hey there!

  • [tex]\bold{Factoring:}[/tex] [tex]\bold{12k^2-16k-60}[/tex]
  • [tex]\bold{Solving\downarrow}[/tex]
  • [tex]\boxed{\boxed{\bold{Answer:4(3k+5)(k−3)}}}[/tex]

  • [tex]\bold{Check\downarrow}[/tex]
  • [tex]\bold{4(3k+5)(k-3)}[/tex]
  • [tex]\bold{4\times3k=12k}[/tex]
  • [tex]\bold{4\times5=20}[/tex]
  • [tex]\bold{4\timesk=4k}[/tex]
  • [tex]\bold{4\times-3=-12}[/tex]
  • Combine your like terms and that should lead us to the equation we have now
  • So, this makes our result true: [tex]\boxed{\boxed{\bold{Answer:4(3k+5)(k-3))}}}[/tex] [tex]\checkmark[/tex]

Good luck on your assignment and enjoy your day! |

~[tex]\bold{LoveYourselfFirst:)}[/tex]