Respuesta :

Answer:

Part 5) [tex]3[/tex]

Part 6) [tex]2[/tex]

Par 7) [tex]S=5\ ft[/tex]

Part 8) [tex]S=7\ m[/tex]

Step-by-step explanation:

Part 5) we have

[tex]\sqrt[3]{27}[/tex]

we know that

[tex]27=3^{3}[/tex]

substitute

[tex]\sqrt[3]{27}=\sqrt[3]{3^{3}}=3^{\frac{3}{3}}=3[/tex]

Part 6) we have

[tex]\sqrt[4]{16}[/tex]

we know that

[tex]16=2^{4}[/tex]

substitute

[tex]\sqrt[4]{16}=\sqrt[4]{2^{4}}=2^{\frac{4}{4}}=2[/tex]

Part 7) we know that

The volume of the cube is equal to

[tex]V=S^{3}[/tex]

where

S is the length side of the cube

In this problem we have

[tex]V=125\ ft^{3}[/tex]

substitute

[tex]125=S^{3}[/tex]

[tex]S=\sqrt[3]{125}=\sqrt[3]{5^{3}}=5^{\frac{3}{3}}=5\ ft[/tex]

Part 8) we know that

The volume of the cube is equal to

[tex]V=S^{3}[/tex]

where

S is the length side of the cube

In this problem we have

[tex]V=343\ m^{3}[/tex]

substitute

[tex]343=S^{3}[/tex]

[tex]S=\sqrt[3]{343}=\sqrt[3]{7^{3}}=7^{\frac{3}{3}}=7\ m[/tex]