Respuesta :

Answers

Q2 hypotenuse=2√2

3√2

4√2

5√2

n√2

Q3 hypotenuse=s√2

Q4 leg length =√10,√12,3√2,5√2

Hypotenuse length=√6,√10

Q5 leg 8,7,√10,25√2/2

Hypotenuse 8√2,2√5

A 45° - 45° - 90° triangle has corresponding sides of: a - a - a√2

In other words, the legs are congruent (equal) and the hypotenuse is the leg multiplied by √2

[tex]2.\\\\\begin {array}{l|c|c|c|c|c}\text{Leg Length}&2&3&4&5&n\\\text{Hypotenuse}&2\sqrt2&3\sqrt2&4\sqrt2&5\sqrt2&n\sqrt2\\\end{array} \\\\\\3.\\\text{If a}\ 45^o-45^o-90^o\ \text{triangle has a leg with length s}\\\text{then the hypotenuse has a length of}\ \boxed{s\sqrt2}\\\\\\4.\\\\\begin {array}{l|c|c|c|c|c|c}\text{Leg Length}&\boxed{10}&\boxed{12}&\sqrt3&\sqrt5&\boxed{3\sqrt2}&\boxed{5\sqrt2}\\\text{Hypotenuse}&10\sqrt2&12\sqrt2&\boxed{\sqrt6}&\boxed{\sqrt10}&6&10\\\end{array}[/tex]

[tex]5.\\\\\begin {array}{l|c|c|c|c}\text{Leg 1}&8&\boxed{7}&\boxed{\sqrt10}&\boxed{\dfrac{25\sqrt2}{2}}\\\text{Leg 2}&\boxed{8}&\boxed{7}&\sqrt10&\boxed{\dfrac{25\sqrt2}{2}}\\\text{Hypotenuse}&\boxed{8\sqrt2}&7\sqrt2&\boxed{2\sqrt5}&25\\\end{array}[/tex]