damisi
contestada

Use the quadratic formula to find both solutions to the quadratic equation given below x^2+6x=27

Use the quadratic formula to find both solutions to the quadratic equation given below x26x27 class=

Respuesta :

Answer:

x=3 or x=−9

Step-by-step explanation:

Step 1: Subtract 27 from both sides.

x2+6x−27=27−27

x2+6x−27=0

Step 2: Factor left side of equation.

(x−3)(x+9)=0

Step 3: Set factors equal to 0.

x−3=0 or x+9=0

x=3 or x=−9

Answer:

x=3 or x=−9

Answer:

option (d) and (f) is correct.

The solution of given quadratic equation is 3 and -9.

Step-by-step explanation:

Given quadratic equation [tex]x^2+6x=27[/tex]

We have to solve the given quadratic equation using quadratic formula.

Consider [tex]x^2+6x=27[/tex] , we can rewrite it as [tex]x^2+6x-27=0[/tex]

For the general quadratic equation [tex]ax^2+bx+c=0[/tex] the quadratic formula is given as [tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Here a = 1 , b= 6 and c = -27

Substitute, we get,

[tex]x_{1,\:2}=\frac{-6\pm \sqrt{6^2-4\cdot \:1\left(-27\right)}}{2\cdot \:1}[/tex]

Solving further , we get,

[tex]x_{1,2}=\frac{-6\pm\sqrt{6^2+4\cdot \:1\cdot \:27}}{2\cdot \:1}[/tex]

[tex]x_{1,2}=\frac{-6\pm\sqrt{144}}{2\cdot \:1}[/tex]

We know [tex]\sqrt{144}=12[/tex], we get,

[tex]x_{1,2}=\frac{-6\pm 12}{2\cdot \:1}[/tex]

[tex]x_{1}=\frac{-6+12}{2}[/tex] and [tex]x_{2}=\frac{-6-12}{2}[/tex]

Solving we get,

[tex]x_{1}=\frac{6}{2}[/tex] and [tex]x_{2}=\frac{-18}{2}[/tex]

[tex]x_{1}=3[/tex] and [tex]x_{2}=-9[/tex]

Thus, the solution of given quadratic equation is 3 and -9.

Thus, option (d) and (f) is correct.