Foil: (x+9)(3x-4)
Answer:


Factor: 6r5s + 4r4s2- 8r2s
Answer:



1. Write an equation in which the quadratic expression equals 0. Show the expression in factored form and explain what your solutions mean for the equation. Show your work. Answer:

Respuesta :

QUESTION 1

The given binomial is;

[tex](x+9)(3x-4)[/tex]

First terms are multiplied: [tex]x\times 3x=3x^2[/tex]

Outside terms are multiplied: [tex]x\times -4=-4x[/tex]

Inside terms are multiplied: [tex]9\times 3x=27x[/tex]

Last terms are Multiplied: [tex]9\times -4=-36[/tex]

This gives us;

[tex]=3x^2-4x+27x-36[/tex]

[tex]=3x^2+23x-36[/tex]

QUESTION 2

We want to factor

[tex]6r^5s+4r^4s^2-8r^2s[/tex]

The HCF is [tex]2r^2s[/tex]

We factor to get;

[tex]2r^2s(3r^3+2r^2s-4)[/tex]

QUESTION 3;

[tex]x^2+x-2=0[/tex]

Split the middle term;

[tex]x^2+2x-x-2=0[/tex]

Factor

[tex]x(x+2)-1(x+2)=0[/tex]

[tex](x+2)(x-1)=0[/tex]

[tex](x+2)=0,(x-1)=0[/tex]

[tex]x=-2,x=1[/tex]

The solutions are;

[tex]x=-2[/tex] and [tex]x=1[/tex]

These are the x-intercepts of the graph of the function

[tex]f(x)=x^2+x-2[/tex]