Rewrite the expression 7x^2 + 14x - 56 as three factors where one of the factors is an integer value.
Choose three factors and write an equivalent expression.

options listed:
6

7

42

(x+1)

(x-1)

(x+2)

(x-2)

(x+3)

(x-3)

(x+4)

(x-4)

Respuesta :

Answer:

The factors are [tex]7,(x-2),(x+4)[/tex]

[tex]7x^{2} +14x-56=7(x-2)(x+4)[/tex]

Step-by-step explanation:

we have

[tex]7x^{2} +14x-56[/tex]

equate the expression to zero

[tex]7x^{2} +14x-56=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]7x^{2} +14x=56[/tex]

Factor the leading coefficient

[tex]7(x^{2} +2x)=56[/tex]

[tex](x^{2} +2x)=8[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex](x^{2} +2x+1)=8+1[/tex]

[tex](x^{2} +2x+1)=9[/tex]

Rewrite as perfect squares

[tex](x+1)^{2}=9[/tex]

Take square root both sides

[tex](x+1)=(+/-)3[/tex]

[tex]x=-1(+/-)3[/tex]

[tex]x=-1(+)3=2[/tex]

[tex]x=-1(-)3=-4[/tex]

therefore

[tex]7x^{2} +14x-56=7(x-2)(x+4)[/tex]