Kor4k
contestada

Plz help asap

Use the Pythagorean Identity to find the missing trig function.


a) Find [tex]sin0[/tex] if [tex]cos0=\frac{1}{4}[/tex]

b) Find [tex]cos0[/tex] if [tex]sin0=\frac{2}{5}[/tex]

c) Find [tex]sin0[/tex] if [tex]cos0=\frac{3}{4}[/tex]

Respuesta :

Answer:

Step-by-step explanation:

a) cos∅=[tex]\frac{1}{4}[/tex]

  √(4²-1²)=√(16-1)=√(15)

   ∴sin∅=[tex]\frac{\sqrt{15} }{4}[/tex]

b) sin∅=[tex]\frac{2}{5}[/tex]

  √(5²-2²)=√(25-4)=√(21)

  ∴cos∅=[tex]\frac{\sqrt{21} }{5}[/tex]

c) cos∅=[tex]\frac{3}{4}[/tex]

   √(4²-3²)=√(16-9)=√(7)

  ∴sin∅=[tex]\frac{\sqrt{7} }{4}[/tex]

Answer: [tex]\bold{a)\ sin\ \theta=\dfrac{\sqrt{15}}{4}}[/tex]

              [tex]\bold{b)\ cos\ \theta=\dfrac{\sqrt{21}}{5}}[/tex]

              [tex]\bold{c)\ sin\ \theta=\dfrac{\sqrt7}{4}}[/tex]

Step-by-step explanation:

The Pythagorean Theorem is: a² + b² = c²    where;

  • a represents adjacent side
  • b represents opposite side
  • c represents hypotenuse

[tex]a)\ cos\ \theta=\dfrac{adjacent}{hypotenuse}=\dfrac{1}{4}\\\\1^2+(opposite)^2=4^2\\1 + (opposite)^2=16\\.\ \quad (opposite)^2=15\\.\qquad opposite=\sqrt{15}\\\\sin\ \theta = \dfrac{opposite}{hypotenuse}=\boxed{\dfrac{\sqrt{15}}{4}}[/tex]

[tex]b)\ sin\ \theta=\dfrac{opposite}{hypotenuse}=\dfrac{2}{5}\\\\(adjacent)^2+2^2=5^2\\(adjacent)^2+4=25\\(adjacent)^2\qquad=21\\adjacent\qquad \ =\sqrt{21}\\\\cos\ \theta = \dfrac{adjacent}{hypotenuse}=\boxed{\dfrac{\sqrt{21}}{5}}[/tex]

[tex]a)\ cos\ \theta=\dfrac{adjacent}{hypotenuse}=\dfrac{3}{4}\\\\3^2+(opposite)^2=4^2\\9 + (opposite)^2=16\\.\ \quad (opposite)^2=7\\.\qquad opposite=\sqrt{7}\\\\sin\ \theta = \dfrac{opposite}{hypotenuse}=\boxed{\dfrac{\sqrt{7}}{4}}[/tex]