Respuesta :

frika

Answer:

40 un.

Step-by-step explanation:

The diagonals of the rhombus bisect each other at right angle. This gives us that

  • [tex]VS=\dfrac{1}{2}VN=6\ un.;[/tex]
  • [tex]ES=\dfrac{1}{2}EU=8\ un. ;[/tex]
  • [tex]\angle VSE=90^{\circ}.[/tex]

By the Pythagorean theorem,

[tex]VE^2=VS^2+ES^2,\\ \\VE^2=6^2+8^2,\\ \\ VE^2=36+64,\\ \\VE^2=100,\\ \\VE=10\ un.[/tex]

The sides of the rhombus are all of the same length, then the perimeter of the rhombus is

[tex]P_{VENU}=4\cdot 10=40\ un.[/tex]

Ver imagen frika