if sin theta = 2/3 and tan theta <0 what is the value of cos theta?
a) (sqrt5)/2
b) -sqrt5
c) (sqrt5)/3
d) -(sqrt5)/3

Respuesta :

Answer:

d) [tex]\cos(\theta)=-\frac{\sqrt{5}}{3}[/tex]

Step-by-step explanation:

If   [tex]\sin(\theta)=\frac{2}{3}[/tex] and [tex]\tan(\theta)\:<\:0[/tex], then

[tex]\theta[/tex] is in quadrant 2.

Recall that;

[tex]\sin^2(\theta)+\cos^2(\theta)=1[/tex]

We substitute the given sine ratio to obtain;

[tex](\frac{2}{3})^2+\cos^2(\theta)=1[/tex]

[tex]\frac{4}{9}+\cos^2(\theta)=1[/tex]

[tex]\cos^2(\theta)=1-\frac{4}{9}[/tex]

[tex]\cos^2(\theta)=\frac{5}{9}[/tex]

[tex]\cos(\theta)=\pm \sqrt{\frac{5}{9}}[/tex]

[tex]\cos(\theta)=\pm \frac{\sqrt{5}}{3}[/tex]

We are in the second quadrant, therefore

[tex]\cos(\theta)=-\frac{\sqrt{5}}{3}[/tex]