Respuesta :

Assuming 0x6A is given in base 16, first convert [tex]152_b[/tex] and [tex]6A_{16}[/tex] to a common base, say base 10:

[tex]152_b=1\cdot b^2+5\cdot b^1+2\cdot b^0=(b^2+5b+2)_{10}[/tex]

[tex]6A_{16}=6\cdot16^1+10\cdot16^0=106_{10}[/tex]

Then

[tex]b^2+5b+2=106[/tex]

[tex]b^2+5b-104=(b-13)(b+8)=0[/tex]

[tex]\implies b=13[/tex]

Answer:

The value of b is, 8

Step-by-step explanation:

Determine the value of b;

Given:

[tex](152)_b = 0x6A[/tex]             ....[1]

Since, 0x6A represents the hexadecimal form.

First convert this hexadecimal form into decimal form:

[tex](6A) = (6 \times 16^1)+(A \times 16^0) = (96)+(10 \times 1) = 96+10 = 106[/tex]

⇒[tex]0x6A = 106[/tex] (decimal form)

Now we have to convert this decimal form into octal

8  |  106

8   |  13   | 2

     |   1    | 5

          1

Then, the octal form we get, [tex](152)_8[/tex]

Substitute these in [1] we have;

[tex](152)_b=(152)_8[/tex]  

On comparing both sides we get;

b = 8

Therefore, the value of b is, 8