determine the value of x?

Answer:
see explanation
Step-by-step explanation:
Using the rule of exponents
[tex]a^{m}[/tex] ÷ [tex]a^{n}[/tex] = [tex]a^{(m-n)}[/tex], then
[tex]a^{x^2-5x}[/tex] = [tex]a^{6}[/tex], hence
x² - 5x = 6 ( subtract 6 from both sides )
x² - 5x - 6 = 0 ← in standard form
(x - 6)(x + 1) = 0 ← in factored form
Equate each factor to zero and solve for x
x - 6 = 0 ⇒ x = 6
x + 1 = 0 ⇒ x = - 1
Answer:
Step-by-step explanation:
Using the rule of exponents:
a^{m} ÷ a^{n} = a^{(m-n)} , then
aˣ² ÷ a^{5x} = a⁶
⇒ a^{x^2 - 5x} = a⁶
⇒ x² - 5x = 6
x² - 5x - 6 = 0
(x - 6)(x + 1) = 0 [middle term splitting]
Equate each factor to zero and solve for x
x - 6 = 0 ⇒ x = 6 ║ x + 1 = 0 ⇒ x = -1