Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the rule of exponents

[tex]a^{m}[/tex] ÷ [tex]a^{n}[/tex] = [tex]a^{(m-n)}[/tex], then

[tex]a^{x^2-5x}[/tex] = [tex]a^{6}[/tex], hence

x² - 5x = 6 ( subtract 6 from both sides )

x² - 5x - 6 = 0 ← in standard form

(x - 6)(x + 1) = 0 ← in factored form

Equate each factor to zero and solve for x

x - 6 = 0 ⇒ x = 6

x + 1 = 0 ⇒ x = - 1

Answer:

x=6, -1

Step-by-step explanation:

Using the rule of exponents:

a^{m} ÷ a^{n} = a^{(m-n)} , then

aˣ² ÷ a^{5x}  = a⁶

⇒ a^{x^2 - 5x} = a⁶

⇒ x² - 5x = 6

x² - 5x - 6 = 0

(x - 6)(x + 1) = 0 [middle term splitting]

Equate each factor to zero and solve for x

x - 6 = 0 ⇒ x = 6     ║     x + 1 = 0 ⇒ x = -1