Respuesta :
Answer: OPTION D
Step-by-step explanation:
Solve for x in each inequality given in the problem, as you can see below:
[tex]-2x+11>31[/tex]
[tex]-2x+11>31\\-2x>31-11\\-2x>20\\x<-10[/tex]
[tex]7x-4\geq17\\7x\geq17+4\\7x\geq21\\x\geq3[/tex]
Finally you must make the union of both solutions obtained above.
Then for the first inequality you have:
[tex]x<-10[/tex]
and for the second inequality you have:
[tex]x\geq3[/tex]
Therefore, the solution is:
[tex]x<-10\ or\ x\geq3[/tex]
Answer:
The correct answer option is D. x < -10 or x ≥ 3.
Step-by-step explanation:
We are given the following compound inequality and we are to solve it:
[tex]-2x + 11 > 31[/tex] or [tex]7x- 4 \geq 17[/tex]
Solving them to get:
[tex]-2x+11>31[/tex]
[tex]-2x>31-11[/tex]
[tex]-2x>20[/tex]
[tex]x<-\frac{20}{2}[/tex]
x < -10
[tex]7x-4\geq 17[/tex]
[tex]7x\geq 17+4[/tex]
[tex]x\geq \frac{21}{7}[/tex]
x ≥ 3
Therefore, the correct answer option is D. x < -10 or x ≥ 3.