Respuesta :
Answer: Third option (In step 3 she needed to subtract c rather than divide)
Step-by-step explanation:
When she subtract b from both sides of the equation, she obtained:
[tex]3s-b=a+c[/tex]
Therefore, to leave the a alone at one member of the equation, she needs to subtract c from both sides of the equation.
Then, she would obtain the following:
[tex]3s-b-c=a+c-c\\3s-b-c=a\\a=3s-b-c[/tex]
Therefore the answer is the third option: In step 3 she needed to subtract c rather than divide.
Answer:
The true statement is: In step 3 she needed to subtract c rather than divide.
Step-by-step explanation:
Lets solve our equation [tex]s=\frac{a+b+c}{3}[/tex] step by step.
Step 1. Since 3 is the denominator of the right hand side, we need to multiply both sides of the equation by 3:
[tex]3s=\frac{3(a+b+c)}{3}[/tex]
Now we can cancel the 3 in the numerator and the 3 in the denominator to get
[tex]3s=a+b+c[/tex]
As you can see, the first statement is false
Step 2. Since we want to isolate the variable [tex]a[/tex], we need to subtract b from both sides of the equation:
[tex]3s=a+b+c[/tex]
[tex]3s-b=a+b+c-b[/tex]
[tex]3s-b=a+c[/tex]
The second statement is also false
Step 3. The last thing we to do to isolate [tex]a[/tex] (and solve for it) is subtract c from both sides of the equation:
[tex]3s-b-c=a+c-c[/tex]
[tex]3s-b-c=a[/tex]
[tex]a=3s-b-c[/tex]
Therefore, the third statement is true: In step 3 she needed to subtract c rather than divide.