Respuesta :

Answer:

Option d. [tex]4y+2x\leq -1[/tex]

Step-by-step explanation:

we know that

If a ordered pair is a solution of an inequality, then the ordered pair must be satisfy the inequality

Verify each case

case a) [tex]y\geq2x+8[/tex]

we have

[tex]x=5, y=-3[/tex]

Substitute the value of x and the value of y in the inequality and then compare the results

[tex]-3\geq2(5)+8[/tex]

[tex]-3\geq18[/tex] -----> is not true

therefore

the ordered pair is not a solution

case b) [tex]-2y<3x-9[/tex]

we have

[tex]x=5, y=-3[/tex]

Substitute the value of x and the value of y in the inequality and then compare the results

[tex]-2(-3)<3(5)-9[/tex]

[tex]6<6[/tex] -----> is not true

therefore

the ordered pair is not a solution

case c) [tex]y-2x>5[/tex]

we have

[tex]x=5, y=-3[/tex]

Substitute the value of x and the value of y in the inequality and then compare the results

[tex]-3-2(5)>5[/tex]

[tex]-13>5[/tex] -----> is not true

therefore

the ordered pair is not a solution

case d) [tex]4y+2x\leq -1[/tex]

we have

[tex]x=5, y=-3[/tex]

Substitute the value of x and the value of y in the inequality and then compare the results

[tex]4(-3)+2(5)\leq -1[/tex]

[tex]-2\leq -1[/tex] -----> is  true

therefore

the ordered pair is a solution