Respuesta :

Answer:

[tex]B=12x[/tex]

Step-by-step explanation:

Given: [tex]cos^2(6x)-sin^2(6x)=cos(B)[/tex]

Let's simplify the left part of the equation:

[tex]cos(12x)=cos(B)[/tex]

Solve for B:

[tex]B=12x[/tex]

The value of B which for the expression cos^2(6x)-sin^2(6x)=cos(B) is B = 12x + 2πn

What is the expansion of sum for cosine of sum of two angles?

Suppose we've got cosine of angle A and B measurements.

Then, we have:

[tex]\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)[/tex]

If we get A = B, then:

[tex]\cos(2A) = \cos^2(A)- \sin^2(A)[/tex]

Since we're specified the equation [tex]cos^2(6x)-sin^2(6x)=cos(B)[/tex]

Thus, by the above specified conclusion, we get;

[tex]\cos^2(6x)-\sin^2(6x)=\cos(B)\\\\\cos(2 \times 6x) = \cos(B) \\\\\cos(12x) = \cos(B)[/tex]

Since cosine has period of [tex]2\pi[/tex] radians, therfore we get:

[tex]B = 12x + 2\pi n[/tex]

where n is an integer.

Thus, the value of B which for the expression cos^2(6x)-sin^2(6x)=cos(B) is B = 12x + 2πn

Learn more about trigonometric identities here:

https://brainly.com/question/13094664