Respuesta :
Answer:
[tex]4.95\cdot 10^{-21} J[/tex]
Explanation:
First of all, let's convert everything into SI units:
n = 2.4 mol (number of gas moles)
[tex]p=11 atm = 1.11\cdot 10^6 Pa[/tex] (gas pressure)
[tex]V=4.3 L=4.3\cdot 10^{-3} m^3[/tex] (gas volume)
R = 8.31451 J/K · mol (gas constant)
The ideal gas equation states that
[tex]pV=nRT[/tex]
Solving for T, we find the gas temperature
[tex]T=\frac{pV}{nR}=\frac{(1.11\cdot 10^6)(4.3\cdot 10^{-3})}{(2.4)(8.31451)}=239.2 K[/tex]
And now we can find the average kinetic energy of the gas:
[tex]E_K = \frac{3}{2}kT[/tex]
where
k = 1.38066 × 10−23 J/K is the Boltzmann's constant
Substituting,
[tex]E_K = \frac{3}{2}(1.38066\cdot 10^{-23} J/K)(239.2 K)=4.95\cdot 10^{-21} J[/tex]
The average kinetic energy of the gas molecule is 4.97 × 10⁻²¹ J
Calculating the average kinetic energy of a gas molecule
From the question, we are to calculate the average kinetic energy of the gas molecule.
The average kinetic energy of a gas molecule can be calculated from the formula,
[tex]KE_{avg}=\frac{3}{2}k_{b}T[/tex]
Where [tex]k_{b}[/tex] is the Boltzmann's constant
and T is the temperature
Now, we will determine the temperature of the gas
From the given information
R = 8.31451 J/K.mol
n = 2.4 moles
V = 4.3 L
P = 11 atm = 1114.58 KPa
From the ideal gas equation
PV=nRT
Then, we can write that
[tex]T = \frac{PV}{nR}[/tex]
Putting the parameters into the equation, we get
[tex]T = \frac{1114.58 \times 4.3}{2.4 \times 8.31451}[/tex]
T = 240.1772
T ≅ 240.2 K
Now, for the average kinetic energy of the gas molecule
[tex]KE_{avg}=\frac{3}{2}k_{b}T[/tex]
From the given information
[tex]k_{b} = 1.38066 \times 10^{-23}[/tex]
∴ [tex]KE_{avg}=\frac{3}{2} \times 1.38066 \times 10^{-23} \times 240.2[/tex]
[tex]KE_{avg}= 4.97 \times 10^{-21} \ J[/tex]
Hence, the average kinetic energy of the gas molecule is 4.97 × 10⁻²¹ J
Learn more on Calculating average kinetic energy of a gas molecule here: https://brainly.com/question/9078768