Respuesta :

Answer:

B: (9, 1)

Step-by-step explanation:

The mid point is (5, 3).  Compare the x and y values to point A: (1,5)  

We can see that the 'x' coordinate is 4 units higher than point A, so the x value for point B will be 4 points higher than the x value of the mid point.  

             5 + 4 = 9

We can see that the 'y' coordinate is 2 units less than point A, so the y value for point B will be 2 points less than the y value of the  mid point.  

            3 - 2 = 1

Answer:

B coordinate is  ( 9 ,1).

Step-by-step explanation:

Given  : The midpoint of segment AB is (5, 3). The coordinates of point A are (1, 5).

To find : Find the coordinates of point B.

Solution : We have given

Midpoint of segment AB = (5, 3).

The coordinates of point A =  (1, 5).

Mid point : [tex]\frac{(x_{1}+x_{2}}{2} ,\frac{(y_{1}+y_{2}}{2})[/tex].

On plugging the values.

(5,3) = [tex]+\frac{1+x_{2}}{2} ,\frac{(5+y_{2}}{2})[/tex].

Now on comparing x coordinates

[tex](\frac{(1+x_{2}}{2})[/tex] = 5

On multiplying both number by 2

1 +[tex]x_{2}[/tex] = 10.

On subtracting both sides by 1.

[tex]x_{2}[/tex] = 9

Now on comparing y coordinates

[tex]\frac{(5+y_{2}}{2})[/tex] = 3

On multiplying both number by 2

5 +[tex]y_{2}[/tex] = 6

On subtracting both sides by 5.

[tex]y_{2}[/tex] = 1

Then B coordinate is  ( 9 ,1).

Therefore,  B coordinate is  ( 9 ,1).

Therefore, B coordinate is  ( 9 ,1).