a snowman is made of three spherical snowballs with a diameters of 3 feet, 2 feet, and 1 foot. what is the total volume of the snowman?represent your answer in terns of pi

Respuesta :

Answer:

The total volume of the snowman is [tex]6\pi\ ft^{3}[/tex]

Step-by-step explanation:

we know that

The volume of a sphere is equal to

[tex]V=\frac{4}{3}\pi r^{3}[/tex]

step 1

Find the volume of the spherical snowball with a diameter of 3 feet

Find the radius

[tex]r=3/2=1.5\ ft[/tex] ----> the radius is half the diameter

substitute

[tex]V=\frac{4}{3}\pi (1.5)^{3}[/tex]

[tex]V1=\frac{9}{2}\pi\ ft^{3}[/tex]

step 2

Find the volume of the spherical snowball with a diameter of 2 feet

Find the radius

[tex]r=2/2=1\ ft[/tex] ----> the radius is half the diameter

substitute

[tex]V=\frac{4}{3}\pi (1)^{3}[/tex]

[tex]V2=\frac{4}{3}\pi\ ft^{3}[/tex]

step 3

Find the volume of the spherical snowball with a diameter of 1 feet

Find the radius

[tex]r=1/2=0.5\ ft[/tex] ----> the radius is half the diameter

substitute

[tex]V=\frac{4}{3}\pi (0.5)^{3}[/tex]

[tex]V3=\frac{1}{6}\pi\ ft^{3}[/tex]

step 4

Find the total volume

[tex]V=V1+V2+V3[/tex]

substitute the values

[tex]V=\frac{9}{2}\pi+\frac{4}{3}\pi+\frac{1}{6}\pi=\frac{27+8+1}{6}\pi=6\pi\ ft^{3}[/tex]